ГоловнаЗворотній зв'язок
Главная->Різні конспекти лекцій->Содержание->5.3. Автокорреляция ошибок

Эконометрия

5.3. Автокорреляция ошибок

 

Пусть теперь наблюдения однородны по дисперсии и их последовательность имеет физический смысл и жестко фиксирована (например, наблюдения проводятся в последовательные моменты времени).

Для проверки гипотезы о наличии линейной автокорреляции 1-го порядка ошибок по наблюдениям

                               ,

где r - коэффициент авторегрессии 1-го порядка;

h - N-вектор-столбец {hi};

можно использовать критерий Дарбина-Уотсона или DW-критерий (при автокорреляции 2-го и более высоких порядков его применение становится ненадежным).

Фактическое значение dc статистики Дарбина-Уотсона (отношения Фон-Неймана) или DW-статистики раcсчитывается следующим образом:

                                                    

Оно лежит в интервале от 0 до 4, в случае отсутствия автокорреляции ошибок приблизительно равно 2, при положительной автокорреляции смещается в меньшую сторону, при отрицательной - в большую сторону.

Если r = 0, величина d распределена нормально, но параметры этого распределения зависят не только от N и n. Поэтому существует по два значения для каждого (двустороннего) квантиля, соответствующего определенным q, N и n: его нижняя dL и верхняя dU границы. Нулевая гипотеза принимается, если ; она отвегается в пользу гипотезы о положительной автокорреляции, если , и в пользу гипотезы об отрицательной автокорреляции, если . Если  или , вопрос остается открытым (это - зона неопределенности DW-критерия).

Пусть нулевая гипотеза отвергнута. Тогда необходимо дать оценку матрицы W.

Оценка r параметра авторегрессии r определяется из приближенного равенства

                              ,

или рассчитывается непосредственно из регрессии e на него самого со сдвигом на одно наблюдение.

Оценкой матрицы W является , а матрица D

преобразований в пространстве наблюдений равна .

Для преобразования в пространстве наблюдений, называемом в данном случае авторегрессионным, используют обычно указанную матрицу без 1-й строки, что ведет к сокращению количества наблюдений на одно. В результате такого преобразования из каждого наблюдения, начиная со 2-го, вычитается предыдущее, умноженное на r, теоретическими остатками становятся hi, которые удовлетворяют гипотезе 2.

После этого преобразования снова оцениваются параметры регрессии. Если новое значение DW-статистики неудовлетворительно, то можно провести следующее авторегрессионное преобразование.

Обобщает процедуру последовательных авторегрессионных преобразований метод Кочрена-Оркарта, который заключается в следующем.

Для одновременной оценки r, a и b используется критерий ОМНК (в обозначениях исходной формы уравнения регрессии):

                ,

где zi - n-вектор-строка значений независимых факторов в i-м наблюдении (i-строка матрицы Z).

Поскольку производные функционала по искомым величинам нелинены относительно них, применяется итеративная процедура, на каждом шаге которой сначала оцениваются a и b при фиксированном значении r предыдущего шага (на первом шаге обычно r = 0), а затем - r при полученных значениях a и b. Процесс, как правило, сходится.

 

 

 

 

 

26