yandex rtb 1
ГоловнаЗворотній зв'язок
yande share
Главная->Фізика->Содержание->§1.2 Основные величины

Физическая химия

§1.2 Основные величины

            Теплота (Q) – энергия, которая передаётся одной системой другой при их взаимодействии, зависящая только от температур этих систем.

Работа (A) – энергия, передаваемая одной системой другой, зависящая от наличия силового поля или внешнего давления, под действием которого система меняет свой объём. В последнем случае говорят о работе сил расширения.

Правило знаков для теплоты и работы: теплота считается положительной, если она подводится к системе из окружающей среды (поглощённая теплота) и отрицательной в противоположном случае (отданная теплота); работа считается положительной, если она совершается системой над окружающей средой, и отрицательной, если работу совершает окружающая среда над системой.

Внутренняя энергия (U) – запас энергии системы. Включает в себя все виды энергии, связанные со строением системы, и не включает кинетическую и потенциальную энергии системы как целого. Так как абсолютных знаний о строении вещества не существует, абсолютное значение внутренней энергии найти нельзя.

Энтальпия – запас энергии системы в виде теплоты. Связана с внутренней энергией уравнением H = U + PV. Внутренняя энергия, энтальпия, теплота и работа измеряются в Дж/моль. Внутренняя энергия и энтальпия являются, а теплота и работа не являются функцией состояния системы.

Функцией состояния системы называется функция, изменение которой зависит только от начального и конечного состояний системы и не зависит от пути перехода системы из начального в конечное состояние.

Изменения термодинамических функций в химической термодинамике обозначаются по-разному. Если речь идёт о конечном (большом) изменении, то используют греческий символ ∆. Например,Н, ∆U. Бесконечно малые изменения функций, являющихся функциями состояния системы, обозначают латинской буквой d (dU, dH). Если же функция не является функцией состояния системы, то её бесконечно малое изменение обозначается греческой буквой δ (δА, δQ). Изменения функций состояния системы рассчитываются как разность значений данной функции в конечном и исходном состояниях. Например, Н = Н2 – Н1.

Энтропия (S) – термодинамическая функция, количественно характеризующая степень беспорядка в системе. Является функцией состояния системы, измеряется в Дж/моль∙К.

Энергия Гельмгольца (F) – функция состояния системы, характеризующая протекание химических процессов в изохорно-изотермических условиях.

Энергия Гиббса (G) – функция состояния системы, характеризующая протекание химических процессов в изобарно-изотермических условиях. Энергии Гельмгольца и Гиббса измеряются в Дж/моль.

Соотношение между основными термодинамическими функциями представлено на рис.1.

 

                                                 Н

 

                            PV                     U

 

                            PV                F                    TS

 

                                            G                         TS

 

Рисунок 1 - Соотношение между термодинамическими функциями

 

            Теплоёмкость (С) – количество сообщённой системе теплоты, отнесённое к наблюдаемому при этом повышению температуры:

                                С = .

Различают теплоёмкость при постоянном объёме СV  и теплоёмкость при постоянном давлении СP:

СV = ,    СP =   ,  СP – CV = R,

где R = 8,314 Дж/моль∙К – универсальная газовая постоянная.

 

4