yandex rtb 1
ГоловнаЗворотній зв'язок
yande share
Главная->Фізиологія та анатомія->Содержание->8.5. ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ

Физиология (Том 1)

8.5. ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ

8.5.1. Диффузия газов через аэрогематический барьер

В организме газообмен O2 и СO2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия O2 и СO2 через аэрогематический барьер зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и наконец от перфузии кровью легочных капилляров.

Диффузия газов через альвеолярно-капиллярную мембрану лег­ких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связы­вание газов в крови легочных капилляров, объем которой составляет 80—150 мл, при толщине слоя крови в капиллярах всего 5—8 мкм и скорости кровотока около 0,1 мм* с-1. После преодоления аэро-гематического барьера газы диффундируют через плазму крови в эритроциты.

Значительным препятствием на пути диффузии O2 является мем­брана эритроцитов. Плазма крови практически не препятствует диффузии газов в отличие от альвеолярно-капиллярной мембраны и мембраны эритроцитов (рис. 8.6).

Общие закономерности процесса диффузии могут быть выражены в соответствии с законом Фика следующей формулой:

M/t=deltaP/(X*C*K*ALPHA)

где М — количество газа, t — время, M/t — скорость диффузии, deltaР — разница парциального давления газа в двух точках, X — расстояние между этими точками, С — поверхность газообмена, К — коэффициент диффузии, а — коэффициент растворимости газа.

В легких deltaР является градиентом давлений газа в альвеолах и в крови легочных капилляров. Проницаемость альвеолярно-капил-

лярной мембраны прямо пропорциональна площади контакта между функционирующими альвеолами и капиллярами (С), коэффициен­там диффузии и растворимости (К и а).

Анатомо-физиологическая структура легких создает исключи­тельно благоприятные условия для газообмена: дыхательная зона каждого легкого содержит около 300 млн альвеол и приблизительно аналогичное число капилляров, имеет площадь 40—140 м2, при толщине аэрогематического барьера всего 0,3—1,2 мкм.

Особенности диффузии газов через аэрогематический барьер ко­личественно характеризуются через диффузионную способность лег­ких. Диффузионную способность легких, например для О2, можно определить по формуле:

DL_O2=V_O2/(PA_O2 - Pa_O2) мл.мин

где DLo2 — диффузионная способность легких, Vог — количество потребляемого кислорода, РАо2 и РаO2 — парциальное давление и напряжение кислорода соответственно в альвеолярном воздухе и в артериальной крови.

Для О2 диффузионная способность легких — это объем газа, переносимого из альвеол в кровь в минуту при градиенте альвео-лярно-капиллярного давления газа 1 мм рт. ст. Согласно закону Фика, диффузионная способность мембраны аэрогематического барь­ера обратно пропорциональна ее толщине и молекулярной массе газа и прямо пропорциональна площади мембраны и в особенности коэффициенту растворимости О2 и СO2 в жидком слое альвеоляр-но-капиллярной мембраны.

8.5.2. Содержание газов в альвеолярном воздухе

Ранее (см. табл. 8.1) было указано парциальное давление газов в альвеолярной газовой смеси, которое поддерживается на достаточно постоянном уровне, несмотря на возможные изменения режима легочной вентиляции. Потребление кислорода (VO2) отражает ин­тенсивность клеточного метаболизма. В стационарных условиях ве-

личина V02, измеренная в выдыхаемом воздухе, в целом соответ­ствует клеточному VO2. Конечным продуктом метаболизма является CO2 (Vсо2). Отношение образующегося в результате окисления CO2 к количеству потребляемого в организме O2, t. e. VC02/V02, назы­вается дыхательным коэффициентом.

В условиях покоя в организме за минуту потребляется в среднем 250 мл O2 и выделяется около 230 мл CO2.

Из всего O2 вдыхаемого воздуха (21% от всего объема) в кровь через аэрогематический барьер в легких поступает только /з. Нор­мальное парциальное давление газов в альвеолярном воздухе поддер­живается в том случае, если легочная вентиляция равна 25-кратной величине потребляемого O2. Другим обязательным условием поддер­жания нормальной концентрации газов в альвеолярном воздухе явля­ется оптимальное отношение альвеолярной вентиляции к сердечному дебиту (Q) : Va/Q, которое обычно соответствует 0,8—1,0. Для газо­обмена в легких подобное отношение является оптимальным. Различ­ные зоны легких не представляют собой идеальную модель для под-держания оптимального отношения Va/Q, поскольку альвеолы нерав­номерно вентилируются воздухом и перфузируются кровью.

Для поддержания определенного состава альвеолярного воздуха важна величина альвеолярной вентиляции и ее отношение к уровню метаболизма, т. е. количеству потребляемого O2 и выделяемого CO2. При любом переходном состоянии (например, начало работы и др.) необходимо время для становления оптимального состава альвео­лярного воздуха. Главное значение имеют оптимальные отношения альвеолярной вентиляции к кровотоку.

Состав альвеолярного воздуха измеряют во рту во вторую по­ловину фазы выдоха с помощью быстродействующих анализаторов. В физиологической практике используются масс-спектрометр, ко­торый позволяет определять количество любого дыхательного газа; инфракрасный анализатор CO2 и анализатор O2. Анализаторы не­прерывно регистрируют концентрацию газов в выдыхаемом воздухе.

 

156