yandex rtb 1
ГоловнаЗворотній зв'язок
yande share
Главная->Фізиологія та анатомія->Содержание->2.1.1. Строение и основные свойства клеточных мембран и ионных каналов

Физиология (Том 1)

2.1.1. Строение и основные свойства клеточных мембран и ионных каналов

Согласно современным представлениям, биологические мембра­ны образуют наружную оболочку всех животных клеток и фор­мируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктур­ная организация мембран позволяет им выполнять важнейшие функции.

Строение и функции клеточных мембран. 1. Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, меха­низмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.

2.   Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточ­ных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («по средников»).

3.   Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4.           Высвобождение нейромедиаторов в синаптических оконча­ ниях.

Современными методами электронной микроскопии была опре­делена толщина клеточных мембран (6—12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мем­браны, среди которых наибольшее распространение получила жид-костно-мозаичная модель.

Согласно этой модели, мембрана представлена бислоем фосфо-липидных молекул, ориентированных таким образом, что гидрофоб-

ные концы молекул находятся внутри бислоя, а гидрофильные на­правлены в водную фазу (рис. 2.1). Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.

В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Некоторые белковые молекулы свободно диффундируют в пло­скости липидного слоя; в обычном состоянии части белковых мо­лекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения. Здесь описана только общая схема строения клеточной мембраны и для других типов клеточных мем­бран возможны значительные различия.

Электрические характеристики мембран. Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.

Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эф-

фективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих вре­менные характеристики электрических процессов, протекающих на клеточных мембранах.

Проводимость (g) — величина, обратная электрическому сопро­тивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмемб­ранную разность потенциалов.

Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность кле­точной мембраны пропускать эти вещества, зависит от разности кон­центраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мем­бране определяется подвижностью ионов, толщиной мембраны, рас­пределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток.

Проводимость мембраны является мерой ее ионной проницаемо­сти. Увеличение проводимости свидетельствует об увеличении ко­личества ионов, проходящих через мембрану.

Строение и функции ионных каналов. Ионы Na+, K+, Са2+, Сl-проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (ди­аметр 0,5—0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.

Функцию ионных каналов изучают различными способами. На­иболее распространенным является метод фиксации напряжения, или «voltage-clamp» (рис. 2.2). Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный по­тенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соот­ветствии с законом Ома величина тока пропорциональна проводи­мости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный

ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембран­ная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.

В настоящее время установлены многие типы каналов для раз­личных ионов (табл. 2.1). Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.

Изучение функции отдельных каналов возможно методом ло­кальной фиксации потенциала «path-clamp»; рис. 2.3, А). Стеклян­ный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разре­жение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регист­рируют активность одиночного канала. Система раздражения и ре­гистрации активности канала мало отличается от системы фиксации напряжения.

Таблица  2.1.  Важнейшие ионные каналы и ионные токи возбудимых клеток

 

Тип   канала

Функция

Ток

Блокатор  канала

Калиевый (в покое)

Генерация потенциала по­коя

+ (утечка)

ТЭА

Натриевый

Генерация       потенциала действия

INa+

ттх

Кальциевый

Генерация медленных по-

ICa2+

D-600,   верапа-

 

тенциалов

 

мил

Калиевый   (задер-

Обеспечение  реполяриза-

IK+ (задержка)

ТЭА

жанное выпрямле­ние)

ции

 

 

Калиевый   кальций-активируемый

O2раничение деполяриза­ции, обусловленной то­ком Са2+

+сa2+

ТЭА

Примечание.   ТЭА — тетраэтиламмоний; ТТХ — тетродотоксин.

Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов (рис. 2.3, Б). Длительность пребывания канала в открытом состоянии имеет ве­роятностный характер, но зависит от величины мембранного потен­циала. Суммарный ионный ток определяется вероятностью нахож­дения в открытом состоянии в каждый конкретный период времени определенного числа каналов (рис. 2.3, В).

Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудно-

сти. П. Г. Костюком был разработан метод внутриклеточного диа­лиза, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Ока­залось, что часть ионного канала, открытая во внеклеточное про­странство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.

Именно ионные каналы обеспечивают два важных свойства мем­браны: селективность и проводимость.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так назы­ваемые воротные механизмы).

Рассмотрим принцип работы ионных каналов на примере натри­евого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие h-ворот, расположенных у выхода натриевых каналов (инактивация) (рис. 2.4). Инактивация развивается в клеточной мембране очень быстро

и степень инактивации зависит от величины и времени действия деполяризующего стимула.

Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности. Рассчитано, что активированный натриевый канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представ­ляет собой сумму тысяч одиночных токов.

При генерации одиночного потенциала действия в толстом нерв­ном волокне изменение концентрации ионов Na во внутренней среде составляет всего 1/100 000 от внутреннего содержания ионов Na ги­гантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов (см. табл. 2.1).

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Свойство проводимости различных каналов неодинаково. В ча­стности, для калиевых каналов процесс инактивации, как для на­триевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы.

Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обес­печивается деполяризацией клеточной мембраны, например входя­щим натриевым током.

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации сво­бодного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существен­ную роль в клетках сердца. Электрогенез кардиомиоцитов рассмат­ривается в главе 7. Электрофизиологические характеристики кле­точных мембран исследуют с помощью специальных методов.

 

8