ГоловнаЗворотній зв'язок
Главная->Фізиологія та анатомія->Содержание->10.2.1. Методы исследования энергообмена

Физиология (Том 2)

10.2.1. Методы исследования энергообмена

10.2.1.1. Прямая калориметрия

Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Био­калориметр представляет собой герметизированную и хорошо теп­лоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере че­ловеком или животным, нагревает циркулирующую воду. По коли-

честву протекающей воды и изменению ее температуры рассчиты­вают количество выделенного организмом тепла.

Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров. Схема биокалориметра приведена на рис. 10.1. Продуцируемое организмом человека тепло измеряют с помощью термометров (1,2) по нагреванию воды, протекающей по трубкам в камере. Количество протекающей воды измеряют в баке (3). Через окно (4) подают пищу и удаляют экскременты. С помощью насоса (5) воздух извлекают из камеры и прогоняют через баки с серной кислотой (6 и 8) — для поглощения воды и с натронной известью (7) — для поглощения СО2. O2 подают в ка­меру из баллона (10) через газовые часы (11). Давление воздуха в камере поддерживают на постоянном уровне с помощью сосуда с резиновой мембраной (9).

10.2.1.2. Непрямая калориметрия

Методы прямой калориметрии очень громоздки и сложны. Учи­тывая, что в основе теплообразования в организме лежат окис­лительные процессы, при которых потребляется 02 и образуется СОг, можно использовать косвенное, непрямое, определение теп­лообразования в организме по его газообмену — учету количества

потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма.

Для длительных исследований газообмена используют спе­циальные респираторные камеры (закрытые способы непрямой калориметрии) (рис. 10.2). Кратковременное определение газооб­мена в условиях лечебных учреждений и производства проводят более простыми некамерными методами (открытые способы кало­риметрии).

Наиболее распространен способ Дугласа — Холдейна, при котором в течение 10—15 мин собирают выдыхаемый воз­дух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого (рис. 10.3.). Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обсле­дуемый свободно вдыхает атмосферный воздух, а выдыхает воз­дух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2.

Кислород, поглощаемый организмом, используется для окис­ления белков, жиров и углеводов. Окислительный распад 1 г каж­дого из этих веществ требует неодинакового количества О2 и со­провождается освобождением различного количества тепла. Как видно из табл. 10.2, при потреблении организмом 1 л О2 освобож­дается разное количество тепла в зависимости от того, на окисле­ние каких веществ О2 используется.

Таблица 10.2.  Потребление кислорода и высвобождение тепла при окислении различных веществ в организме

 

Веществ о,

Количество тепла,

Количество

Количество освобож-

окисляющееся

освобождающееся

потребляемого

дающейся при окис-

в организме

при окислении 1 г

02, л

лении 1 л О2 энергии,

 

вещества, кДж  (ккал)

 

кДж   (ккал)

Белки                        17,17(4,1)                     0,966                    19,26(4,60)

Жиры                        38,94(9,3)                     2,019                      19,64(4,69)

Углеводы                    17,17(4,1)                     0,830                    21,14(5,05)

Количество тепла, освобождающегося после потребления ор­ганизмом 1 л Ог, носит название калорического эквивалента кис­лорода. Зная общее количество Ог, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества — белки, жиры или углеводы, оки­слились в теле. Показателем этого может служить дыхательный коэффициент.

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2- Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Для примера рассмотрим, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисления молекулы глюкозы можно выразить формулой:

с6н12о6 + 6 о2 = 6 со2 + 6 н2о.

При окислении глюкозы число молекул образовавшегося С02 равно числу молекул затраченного (поглощенного) О2. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогад-ро — Жерара). Следовательно, дыхательный коэффициент (отно­шение СО2/О2) при окислении глюкозы и других углеводов равен единице.

При окислении жиров и белков дыхательный коэффициент бу­дет ниже единицы. При окислении жиров дыхательный коэффици­ент равен 0,7. Проиллюстрируем это на примере окисления три-пальмитина:

2 СзН5 (С15Н31СОО)з + 145 02 = 102 С02 + 98 Н20.

Отношение между объемами углекислого газа и кислорода сос­тавляет в данном случае:

102CO2/142O2=0.703

Аналогичный расчет можно сделать и для белка; при его окис­лении в организме дыхательный коэффициент равен 0,8. При сме­шанной пище у человека дыхательный коэффициент обычно ра­вен 0,85—089. Определенному дыхательному коэффициенту соот-

ветствует определенный калорический эквивалент кислорода, что видно из табл. 10.3.

Определение энергетического обмена у человека в покое ме­тодом закрытой системы с неполным газовым анализом. Относи­тельное постоянство дыхательного коэффициента (0,85—0,90) у людей при обычном питании в условиях покоя позволяет произво­дить достаточно точное определение энергетического обмена у че­ловека в покое, вычисляя только количество потребленного кисло­рода и беря его калорический эквивалент при усредненном ды­хательном коэффициенте.

Количество потребленного организмом кислорода определяют при помощи различных спирографов.

Определив количество поглощенного кислорода и приняв ус­редненный дыхательный коэффициент равным 0,85, можно рассчи­тать энергообразование в организме; калорический эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал (см. табл. 10.3). Способ неполного газо­вого анализа благодаря своей простоте получил широкое распро­странение.

Дыхательный коэффициент во время работы. Во время интен­сивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняет­ся тем, что главным источником энергии во время напряженной мышечной деятельности является окисление углеводов. После за­вершения работы дыхательный коэффициент в течение первых нескольких минут так называемого периода восстановления резко снижается до величин меньших, чем исходные, и только спустя 30—50 мин после напряженной работы обычно нормализуется. Эти изменения дыхательного коэффициента показаны на рис. 10.4.

Изменения дыхательного коэффициента после окончания рабо­ты не отражают истинного отношения между используемым в дан­ный момент кислородом и выделенной СО2. Дыхательный коэффи­циент в начале восстановительного периода повышается по сле­дующей причине: в мышцах во время работы накапливается молоч­ная кислота, на окисление которой во время работы не хватало О2 (это так называемый кислородный долг). Молочная кислота поступает в кровь и вытесняет СО2 из гидрокарбонатов, присое­диняя основания. Благодаря этому количество выделенного СОг

больше количества СОг, образовавшегося в данный момент в тка­нях. Обратная картина наблюдается в дальнейшем, когда молоч­ная кислота постепенно исчезает из крови. Одна часть ее окисляется, другая ресинтезируется в гликоген, а третья выделяется с мочой и потом. По мере уменьшения количества молочной кислоты осво­бождаются основания, которые до того были отняты у гидрокарбо­натов. Эти основания вновь связывают СОг и образуют гидрокар-бонаты, поэтому через некоторое время после работы дыхательный коэффициент резко падает вследствие задержки в крови СО2, по­ступающей из тканей.

 

43