yandex rtb 1
ГоловнаЗворотній зв'язок
yande share
Главная->Фізиологія та анатомія->Содержание->15.5.2. Психофизиология процесса принятия решения

Физиология (Том 2)

15.5.2. Психофизиология процесса принятия решения

Вся жизнь человека состоит из принятия решений, непрерыв­ной последовательности операций выбора, при этом человек по­стоянно сталкивается с проблемой выбора между несколькими способами поведения. Принятие решения становится обязатель­ным моментом в жизни, поведении человека: с момента рождения и до самой смерти он оказывается постоянно в состоянии необхо­димости принять те или иные решения, одни из которых осущест­вляются автоматически на подсознательном уровне, другие ста­новятся предметом длительного мучительного раздумья, выбора одного из возможных вариантов.

Процесс принятия решения — производное неопределенности ситуации, в которой оно совершается. При полной определенно­сти, когда отсутствует возможность для альтернативных действий, в сущности и нет никакой проблемы: решение принимается одно­значно, автоматически, часто даже не затрагивая сферу сознания. Процесс выбора становится проблемой лишь тогда, когда в систе­ме человек — окружающая среда присутствует неопределенность применительно к осуществлению действий, направленных на до­стижение определенной цели, конечного результата.

Чем больше степень этой неопределенности, тем меньше осно­ваний для однозначного решения и тем более вероятностым оно

становится. Мозг возмещает дефицит информации использова­нием более тонкого и сложного аппарата оценки вероятности того или иного события. Такое усложнение работы мозга, связанное с увеличением количества логических операций, требует большего времени для принятия решения. Поэтому усиление элементов не­определенности ситуации неизбежно приводит к усилению величины латентного периода реакции. С увеличением числа дифференцируе­мых сигналов возрастает неопределенность проблемной ситуации, в которой выполняется процедура принятия решения и как следствие увеличивается время реакции (рис. 15.7). Эта зависимость описы­вается следующим образом (Hick): А = Klog (n + 1), где А — вре­мя реакции с выбором; К — время простой реакции без выбора; п — количество дифференцируемых сигналов.

Познание психофизиологической основы интегративной дея­тельности высших отделов центральной нервной системы, обеспе­чивающих процессы сознания, мышления, невозможно без уста­новления физиологических механизмов принятия решения как узлового момента любой формы целенаправленного поведения. Процесс принятия решения является универсальным принципом анализа, синтеза и переработки в центральных нервных образова­ниях входной сенсорной информации и формирования выходной реакции. Принятие решения — ключевой акт в деятельности любой достаточно сложной биологической системы, функциони­рующей в реальных условиях внешней среды, нашедший свое куль­минационное развитие и совершенствование в различных формах проявления высшей нервной деятельности.

Суть процесса принятия решения сводится к нескольким мо­ментам: восприятие, прием и обработка афферентной информации, образование, формирование поля альтернатив (набор возможных вариантов для последующего выбора), сравнительная оценка аль­тернативных действий в целях осуществления рационального вы­бора и собственно выбор альтернативы — кульминация решения проблемы. Такое представление подтверждает гипотезу о принятии решения как результате, неизбежном итоге интегративного процес­са, когда из множества альтернатив организм стремится выбрать одну, единственную, наилучшим образом обеспечивающую решение

стоящей перед ним задачи. Рассматривая побудительные при­чины того или иного решения, следует отметить, что не может быть решения вообще, решения, не направленного на какой-то определенный эффект, не имеющий какой-либо определенной це­ли. Выбор при принятии решения в значительной мере обусловлен текущей мотивацией. Выяснение нейрофизиологических механиз­мов, лежащих в основе операции выбора в альтернативной ситуа­ции, направлено на дальнейшее углубление знаний о природе вос-приятния и переработки информации в коммуникационных систе­мах мозга. Восприятие, отбор, фиксация и извлечение из памяти соответствующей информации, сравнительный анализ биологичес­кой значимости сигналов, выбор и реализация конкретного пути распространения возбуждения в нервных сетях, формирование эфферентных командных сигналов, поступающих к эффекторным органам, — все это важнейшие компоненты сложного процесса принятия решения. В информационных процессах, ассоциируемых с интеллектуальной творческой деятельностью человека, широко используется оперативный механизм принятия решения.

В процессе принятия решения различаются две принципиально различные фазы: 1) генерация разнообразия (в которой из уни­версального многообразия действий выбирается класс возможных допустимых путей решения, удовлетворяющих условиям решаемой задачи) и 2) ограничение этого разнообразия с целью отбора од-ного-единственного варианта действия (с точки зрения эффектив­ности этого способа достижения цели). Структуру и последовав тельность действий, характеризующих механизм принятия реше-ния, обычно представляют в виде некоторого древовидного про-цесса, в котором по мере решения проблемы — принятия решения в широком смысле этого слова, отсекаются бесперспективные вет­ви. Такими бесперспективными ветвями являются действия, при­водящие к повторяемости промежуточного результата, нарушению условий задачи и т. д.

Степень уверенности лица, принимающего решение при выборе определенной альтернативы, определяется величиной субъектив­ной вероятности этого альтернативного действия. Эти субъектив­ные вероятности основаны на следующих трех эмпирически выве­денных постулатах (П. Линдсей, Д.Норман): 1) люди обычно переоценивают встречаемость событий, имеющих низкую вероят­ность, и недооценивают встречаемость событий, характеризующих­ся высокими значениями вероятности; 2) люди считают, что собы­тие, не наступившее в течение некоторого времени, имеет большую вероятность наступления в ближайшем будущем; 3) люди переоце­нивают вероятность благоприятных для них событий и недооцени­вают вероятность неблагоприятных.

Различают два основных способа принятия решения: алгорит­мический и эвристический. Алгоритмический способ принятия решения предполагает наличие у лица, принимающего решение, значительной информации о проблемной ситуации. Алгоритмичес­кий способ принятия решения сводится к построению совокупнос-

ти правил, следуя которым, автоматически достигается верное решение, т. е. имеется высокая гарантия верного решения проб­лемы.

При эвристическом1 способе получение верного результата при значительном дефиците информации о проблемной ситуации не гарантируется, однако лицо, принимающее решение, используя различные эвристические приемы, может найти рациональное ре­шение. Эвристические приемы сокращают область поиска при ре­шении сложной проблемы и, хотя и не лучшим образом, но все же вполне удовлетворительно обеспечивают решение стоящих пе­ред человеком проблем в течение достаточно короткого промежут­ка времени.

Динамический характер интегральной оценки на клеточном уровне организации нервной системы проявляется в использова­нии в разных условиях функционирования и в различных комби­нациях одних и тех же нейронов. Такой динамизм клеточных ме­ханизмов интеграции и выбора определяется особенностями сен­сорного входа центрального нейрона, вариабельностью его рецеп­тивного поля. Мотивационные влияния избирательно повышают возбудимость только тех нейронов и потенцируют только те ре­цептивные поля, которые когда-либо использовались в поведен­ческих актах. Обстановочная афферентация также модифицирует активацию рецептивных полей центральных нейронов. Сами моти­вационные и обстановочные влияния, определяющие «предпуско­вую интеграцию» нейронного механизма принятия решения, не активируют центральные нейроны. Возбуждение последних про­исходит лишь на основе конвергенции на нервной клетке детона-торных влияний, определяемых функциональной организацией и топографией активируемых синапсов (П. К. Анохин, В. Б. Швыр­ков).

Конвергенция на одном нейроне разных сенсорных потоков свидетельствует о том, что нервная клетка является достаточно сложным интегрирующим образованием, реализующим процесс принятия решения в виде генерации отдельного потенциала дей­ствия или определенной временной последовательности таких по­тенциалов. Обеспечение целенаправленной деятельности системы на основе процесса принятия решения немыслимо без оценки эф­фективности произведенного действия, что в кибернетических сис­темах осуществляется при помощи обратной связи. Структурную основу такой обратной связи в нейронных структурах образуют коллатерали аксонов, поставляющих корковым и подкорковым нейронам точные копии, модели эфферентных возбуждений.

Согласно теории функциональной системы П. К. Анохина, при­нятие решения означает перевод одного системного физиологи­ческого процесса (афферентный синтез) в другой (программа действия). Этот механизм образует критический момент интегра-гивной деятельности, когда разнообразные комбинации физиоло-

гических возбуждений, формируемых в центральных проекцион­ных зонах мозга под влиянием соответствующих сенсорных пото­ков, преобразуются в эфферентные потоки импульсов — обяза­тельные исполнительные команды. В понятиях кибернетики нерв­ной системы процесс принятия решения означает освобождение организма от чрезвычайно большого количества степеней свободы, выбор и реализацию лишь одной из них.

Временные характеристики нейронных механизмов, обеспечи­вающих процесс принятия решения, находят отражение в ком­понентах вызванного потенциала — комплекса электрических волн, регистрируемых из зоны центрального представительства соот­ветствующих сенсорных систем. Процесс принятия решения по времени (100—300 мс в разных сенсорных системах) соответству­ет длительности нейрофизиологического механизма восприятия и переработки сенсорной информации, идентифицируемого по первич­ному ответу (включая и негативную волну). Более поздние компо­ненты вызванного потенциала ассоциируются с функционировани­ем исполнительных механизмов.

С помощью нейрофизиологических и клинических исследова­ний установлено, что лобные доли мозга являются основным нерв­ным субстратом, осуществляющим принятие решения при реали­зации целесообразных произвольных форм деятельности человека (А. Р. Лурия). Поражение лобных долей мозга, не затрагивающее физиологические процессы на входе системы (восприятие инфор­мации), приводит к существенным нарушениям процесса выбора альтернативного действия.

Усложнение проблемной ситуации приводит к достоверному увеличению числа функциональных связей различных зон коры большого мозга, к формированию фокуса повышенной активности во фронтальных областях мозга. Активация теменных зон коры мозга наблюдается на заключительных этапах процесса принятия решения, построения адекватной модели ситуации. Высокая неоп­ределенность проблемной ситуации находит отражение в разной интенсивности роста функциональных связей корковых зон (по сравнению с фоновым состоянием). При снижении неопределен­ности в случае предъявления испытуемому дополнительной ин­формации наблюдается концентрация нейронной активности в лоб­ных и затылочных (для зрительной информации), в лобных и ви­сочных (для слуховой информации) областях коры большого моз­га. Это свидетельствует о том, что в основе нейрофизиологического процесса принятия решения лежат сложные взаимодействия пер­вичных проекционных зон анализаторов и лобных долей мозга, играющих  роль ведущего  интегративного  центра  в коре  мозга.

 

94