yandex rtb 1
ГоловнаЗворотній зв'язок
yande share
Главная->Різні конспекти лекцій->Содержание-> 1. ГРАВІТАЦІЙНІ ПРОЦЕСИ ЗБАГАЧЕННЯ

Гравітаційні процеси збагачення

 1. ГРАВІТАЦІЙНІ ПРОЦЕСИ ЗБАГАЧЕННЯ

 

1.1. ГАЛУЗІ ЗАСТОСУВАННЯ ГРАВІТАЦІЙНИХ ПРОЦЕСІВ

 

Гравітаційними називаються процеси збагачення корисних копалин, що ґрунтуються на використанні гравітаційного поля, в якому розділення мінеральних частинок відбувається внаслідок різниці їх густини, крупності і форми.

Застосування гравітаційних процесів у практиці збагачення корисних копалин визначається: речовинним складом збагачуваного матеріалу і його крупністю, характеристикою збагачуваності корисної копалини, техніко-економічними показниками. Розділення звичайно відбувається в рухомому середовищі з досить високим вмістом твердого. У цих умовах на частинку діють сили ваги, гідродинамічного опору і тертя.

 Крупність корисних копалин, що переробляються гравітаційними процесами, складає від 0,1 до 300 мм. З цих причин гравітаційні процеси займають провідне місце в практиці переробки вугілля, золотовмісних, олов'яних, вольфрамових, молібденових руд і руд чорних металів. Гравітаційні процеси можуть використовуватися як самостійно, так і в поєднанні з іншими процесами збагачення: флотацією, промивкою, магнітною або електричною сепарацією та ін.

За широтою діапазону вихідних характеристик збагачуваної сировини, різноманітністю умов застосування у технологічних схемах збагачувальних фабрик, простотою виробничого комплексу, високою продуктивністю збагачувальних апаратів гравітаційні процеси перевершують багато інших процесів збагачення і забезпечують ефективне розділення мінеральних сумішей при відносно низьких матеріальних, трудових і енергетичних витратах.

 

1.2. МІНЕРАЛИ, ЯКІ ЗБАГАЧУЮТЬ ГРАВІТАЦІЙНИМИ ПРОЦЕСАМИ

 

При гравітаційному розділенні використовуються відмінності у властивостях мінералів за густиною, крупністю і формою зерен.

Густина мінералу – маса одиниці об’єму мінералу; на практиці визначається як відношення маси зерна в моноліті до його об’єму:

 

 δ = m / W,                                                                   (1.1)

 

 де δ – густина мінералу, кг/м3; m – маса зерна, кг; W – об’єм зерна, м3.

За абсолютною величиною густина мінералів, які збагачуються гравітаційними процесами складає від 1300 (вугілля) до 19000 кг/м3 (золото самородне).

Однак для практики гравітаційного збагачення має значення не тільки абсолютна величина густини збагачуваних мінералів, але, - що навіть важливіше, - розходження в густині розділюваних фракцій. Чим більше розходження в густині мінералів, які розділяються, тим ефективніше і легше здійснюється їхнє розділення.

Крупність мінеральних зерен оцінюється лінійним розміром – еквівалентним діаметром (dе), що визначається як діаметр кулі, рівновеликої за об’ємом реальному мінеральному зерну неправильної форми:

 

W= π dе3/6,                                       (1.2)

звідки

dе =                              (1.3)

 

Крупність матеріалів оцінюється їх гранулометричним складом.

При гравітаційному збагаченні зі зменшенням крупності зерен мінеральної суміші зростають витрати на проведення процесу і знижується його ефективність.

Форма мінеральних зерен характеризується коефіцієнтом сферичності φ – відношенням величини поверхні кулі SК до величини поверхні рівновеликого йому за об’ємом зерна неправильної форми S:

  φ = SК / S.                                   (1.4)

 

Форма зерен залежить від природи мінералів. Мінеральні зерна корінних родовищ мають різну неправильну форму (φ ≤ 1): кубічну φ = 0,7-0,8 (магнетит), кутасту φ ≈ 0,8 (вугілля), пластинчасту φ = 0,2-0,6 (сланець), голчасту φ = 0,6-0,7 (азбест). Зерна мінералів розсипних родовищ під впливом руслових потоків набувають обкатаної форми, близької до сферичної φ ≈ 1.

При гравітаційному збагаченні найбільш сприятливий варіант: зерна мінералу більшої густини мають округлу форму, близьку до сферичної, а зерна мінералу меншої густини – плоску форму, близьку до пластинчастої.

 

1.3. СЕРЕДОВИЩА ГРАВІТАЦІЙНИХ ПРОЦЕСІВ

 

При гравітаційному збагаченні корисних копалин як середовища використовують воду, повітря, важкі рідини і суспензії, розчини електролітів. Реологічні властивості середовищ, що впливають на результати розділення: густина, в'язкість і стійкість.

Густина середовища – відношення маси середовища до його об’єму:

 

Δ = m* / W*,                                              (1.5)

де Δ – густина середовища, кг/м3; m* – маса середовища, кг; W* – об’єм середовища, м3.

Найчастіше як середовище при гравітаційному розділенні корисних копалин використовується вода, густина якої за нормальних умов (тиск р = 0,1 МПа; температура Т = 293ºК) складає 1000 кг/м3. Густина повітря в нормальних умовах – 1,23 кг/м3.

Характеристики деяких важких рідин, застосовуваних в основному для аналізів і вивчення збагачуваності корисних копалин, наведені в табл. 1.1.

 

Таблиця 1.1 – Характеристики важких рідин

 

Назва

Хімічна формула

Густина,

кг/м3

Розчинність у

воді

спирті

бензині

бензолі

ефірі

Хлористий цинк

Тетраброметан

Йодистий метилен

Рідина Сушина-Рорбаха

Рідина Клерічі

ZnCl2

C2H2Br4

CH2I2

BaI2 + HgI2

CH2(COOTl)2·HCOOTl

2070

2960

3320

3500

4200

+

-

-

+

+

-

+

+

+

-

-

+

+

+

-

-

+

+

+

-

-

+

+

+

-

 

 

Важка рідина повинна відповідати наступним вимогам:

  - густина рідини повинна бути значно більшою густини легкого мінералу, повинна бути регульованою і не повинна змінюватися з часом;

 - в'язкість рідини і її розчинність у воді повинні бути мінімальними;

 - токсичність рідини повинна бути в межах санітарних норм і вона не повинна взаємодіяти з розділюваними мінералами;

 - рідина повинна мати високу здатність до регенерації, а її вартість не повинна бути високою.

Найбільш повно цим вимогам відповідає тетраброметан (нетоксичний, недорогий, не розчинюється в воді і т.д.).

Аналогічні вимоги висуваються і до суспензій. Густина суспензій визначається густиною обважнювача і його об'ємним вмістом у суспензії:

 

                                          (1.6)

 

де Δс , Δ , δо - густина суспензії, води і обважнювача, кг/м3; со – об'ємна концентрація обважнювача в суспензії, частки од.

Як обважнювачі можуть бути застосовані: пірит, галеніт, магнетит, феросиліцій та ін.

У практиці гравітаційного збагачення для приготування суспензій на вуглезбагачувальних фабриках використовують магнетитовий концентрат густиною 4400 – 4700 кг/м3, на рудозбагачувальних фабриках – феросиліцій густиною 6800 – 7200 кг/м3, які задовольняють усім вимогам до обважнювачів.

В'язкість – властивість середовищ чинити опір відносному руху їхніх сусідніх елементарних шарів. Причина опорів, що виникають при русі рідин, є внутрішнє тертя між сусідніми дотичними шарами. Відповідно до закону Ньютона сили внутрішнього тертя:

FT = S μ  , Н,                                         (1.7)

де FT - сила внутрішнього тертя, Н; S - площа дотичних шарів, м2; μ - динамічний коефіцієнт в'язкості, Па∙с; du - різниця швидкостей руху сусідніх елементарних дотичних шарів, м/с; dh - відстань між осями сусідніх елементарних шарів, м; du/dh - градієнт швидкості, с-1.

При нормальних умовах динамічний коефіцієнт в'язкості води μ = 0,001 Па∙с, а повітря μ = 0,000018 Па·с. Нормальні умови розділення забезпечуються при динамічній в'язкості розділового середовища, яка не перевищує 0,007 Па∙с.

Динамічний коефіцієнт в'язкості суспензії при об'ємній концентрації обважнювача до 40 % визначається за формулою Ванда:

 

,                  (1.8)

 

де μс , μ0 - динамічні коефіцієнти в'язкості суспензії і води, Па∙с; со - об'ємна концентрація обважнювача, частки од.

 Стійкість суспензії – здатність її зберігати задану густину у різних по висоті шарах. . Підвищення стійкості суспензій може бути досягнуто різними способами: створенням висхідних і горизонтальних потоків; застосуванням обважнювачів визначеного складу; додаванням реагентів-пептизаторів; фізико-механічними впливами.

 

 

Література до розділу 1: [1] c. 5 – 22, [2] c. 7 - 14

 

 

 

 

3