ГоловнаЗворотній зв'язок
Главная->Фінанси->Содержание->2.2. Рост по сложным и простым процентам

Методы финансовых и коммерческих расчетов

2.2. Рост по сложным и простым процентам

Для того чтобы сопоставить результаты наращения по разным процентным ставкам, достаточно сравнить соответствующие множители наращения. Нетрудно убедиться в том, что при одинаковых уровнях процентных ставок соотношения этих множителей существенно зависят от срока. Для того чтобы различать сложные и простые ставки, введем подписной индекс s для ставки простых процентов. Получим следующие соотношения множителей наращения:

для срока меньше года простые проценты больше сложных: (1 + nis) > (1 + i)n;

для срока больше года сложные проценты больше простых: (1 + nis) < (1 + i)n;

наконец, для срока, равного году, множители наращения равны друг другу при условии, что временная база для начисления процентов одна и та же.

Заметим также, что с увеличением срока (при n > 1) различие в последствиях применения простых и сложных процентов усиливается. Графическая иллюстрация соотношения множителей наращения приведена на рис. 2.3. В табл. 2.1 содержатся значения множителей наращения для is = i = 12%, K = 365 дней.

Таблица 2.1

Сравнение множителей наращения (is = i = 12%)

Множители наращения

Срок ссуды

30 дней

180 дней

1 год

5 лет

10 лет

100 лет

1 + nis

1,01644

1,05918

1,12

1,6

2,2

13,0

(1 + i)n

1,00936

1,05748

1,12

1,76234

3,10584

83522,3

Срок ссуды и формулы удвоения. Различия в последствиях применения простых и сложных процентов наиболее наглядно проявляются при определении времени, необходимого для увеличения первоначальной суммы в N раз. В этом случае множитель наращения, очевидно, равен N, следовательно,

для простых процентов 1 + nis = N, откуда

                                                                                             (2.5)

для сложных процентов (1 + i)n = N, откуда

                                                                                           (2.6)

Пример 2.4. Определим число лет, необходимое для увеличения первоначального капитала в пять раз, применяя сложные и простые проценты по ставке 15% годовых:

Наиболее наглядно влияние вида ставки можно охарактеризовать, сопоставляя числа лет, необходимые для удвоения первоначальной суммы. В этом случае, положив N = 2, получим следующие формулы удвоения:

удвоение по простым процентам:

удвоение по сложным процентам:

.

Пример 2.5. Найдем сроки удвоения для i = 25,5%:

Результаты применения формул удвоения для ряда значений процентных ставок приведены в табл. 2.2.

Таблица 2.2 Срок, необходимый для удвоения суммы долга

Число лет

Ставка, %

Сложные проценты

Простые проценты

5

14,21

20

10

7,27

10

15

5

6,67

25

3,11

4

 

14