ГоловнаЗворотній зв'язок
Главная->Фінанси->Содержание->2.3. Наращение процентов т раз в году; номинальная и эффективная ставки

Методы финансовых и коммерческих расчетов

2.3. Наращение процентов т раз в году; номинальная и эффективная ставки

Номинальная ставка. В современных условиях проценты капитализируются обычно не один, а несколько раз в году — по полугодиям, кварталам и т.д. Некоторые зарубежные коммерческие банки практикуют даже ежедневное начисление процентов. При начислении процентов несколько раз в году можно воспользоваться формулой (2.1), однако параметр n в этих условиях будет означать число периодов начисления, а под ставкой i следует понимать ставку за соответствующий период. Например, при поквартальном начислении процентов за пять лет по квартальной (сложной) ставке 8% общее число периодов начисления составит 5 х 4 = 20. Множитель наращения равен 1,0820 = 4,6609. На практике, как правило, в контрактах фиксируется не ставка за период, а годовая ставка и одновременно указывается период начисления процентов, например «18% годовых с поквартальным начислением процентов».

Итак, пусть годовая ставка равна у, а число периодов начисления в году равно т. Таким образом, каждый раз проценты начисляются по ставке j/m. Ставку j называют номинальной (nominal rate).

Формулу наращения теперь можно представить следующим образом:

S = P(1 + j/m)N,                                                                                    (2.7)

где N — общее количество периодов начисления;

j — номинальная годовая ставка (десятичная дробь).

Если N — целое число (N = mn), то в большинстве случаев для определения величины множителя наращения можно воспользоваться таблицей сложных процентов (Приложение, табл. 2). Например, при j = 20% и поквартальном начислении процентов (т = 4) в течение пяти лет отыскиваем табличное значение множителя для i = 20/4 = 5% и п = 5 х 4 = 20; находим q = 2,653298.

Пример 2.6. Изменим одно условие в примере 2.1. Пусть теперь проценты начисляются поквартально. В этом случае N = 20 и  руб.

Напомним, что при начислении процентов раз в год мы получили S =2 055 464,22.

Нетрудно догадаться, что чем чаще начисляются проценты, тем быстрее идет процесс наращения. Для иллюстрации сказанного приведем значения множителей наращения для j = 20% и n = 10 лет и разной частоты наращения:

M

1

2

4

12

365

Q

6,1917

6,7275

7,04

7,2682

7,385

Пример 2.7. Какова сумма долга через 25 месяцев, если его первоначальная величина 500 тыс. руб., проценты сложные, ставка — 20% годовых, начисление поквартальное?

По условиям задачи число периодов начисления N = 25:3 = 8 1/3. Применим два метода наращения — общий и смешанный (см. формулу (2.4)). Соответственно получим

 руб.;

 руб.

Эффективная ставка. Введем теперь новое понятие — действительная, или эффективная, ставка процента (effective rate). Эта ставка измеряет тот реальный относительный доход, который получают в целом за год от начисления процентов. Иначе говоря, эффективная ставка — это годовая ставка сложных процентов, которая дает тот же результат, что и m-разовое начисление процентов по ставке j/m. Обозначим эффективную ставку через i. По определению множители наращения по двум видам ставок (эффективной и номинальной при m-разовом начислении) должны быть равны друг другу:

,

откуда

                                                                                     (2.8)

Как видим, эффективная ставка при т > 1 больше номинальной, при т = 1 i =j.

Замена в договоре номинальной ставки j при m-разовом начислении процентов на эффективную ставку i не изменяет финансовых обязательств участвующих сторон, т.е. обе ставки эквивалентны в финансовом отношении.

Пример 2.8. Какова эффективная ставка, если номинальная ставка равна 25% при помесячном начислении процентов?

i = (1 + 0,25/12)12 - 1 = 0,280732.

Для сторон в сделке безразлично: применить ставку 25% (при помесячном начислении) или годовую ставку 28,0732%.

При подготовке контрактов может возникнуть необходимость и в решении обратной задачи — в определении j по заданным значениям i и т. Находим

                                                                                    (2.9)

 

15