yandex rtb 1
ГоловнаЗворотній зв'язок
yande share
Главная->Фінанси->Содержание->4.2. Наращенная сумма постоянной ренты постнумерандо

Методы финансовых и коммерческих расчетов

4.2. Наращенная сумма постоянной ренты постнумерандо

Методом прямого счета, как это было показано в параграфе 4.2, можно найти наращенную сумму и современную стоимость любого потока платежей, в том числе и постоянной ренты. Однако удобнее, особенно в аналитических целях, воспользоваться более компактными формулами. Поскольку обобщающие характеристики постоянных рент играют существенную роль в анализе финансовых операций, получим эти формулы для всех видов постоянных рент, хотя для понимания существа дела достаточно разобраться с расчетом соответствующих характеристик годовой ренты.

Годовая рента. Начнем с наиболее простого случая — годовой ренты постнумерандо. Пусть в течение п лет в банк в конце каждого года вносится по R руб. На взносы начисляются сложные проценты по ставке i% годовых. Таким образом, имеется рента, член которой равен R, а срок n. Все члены ренты, кроме последнего, приносят проценты — на первый член проценты начисляются n — 1 год, на второй п — 2 и т. д. На последний взнос проценты не начисляются (напомним, что рента постнумерандо). Наращенные к концу срока каждого взноса суммы составят:

R(1 + i)n-1, R(1 + i)n-2,..., R(1 + i), R.

Перепишем этот ряд в обратном порядке. Нетрудно убедиться в том, что он представляет собой геометрическую прогрессию со знаменателем (1 + i) и первым членом R. Число членов прогрессии равно п. Искомая величина очевидно равна сумме членов этой прогрессии. Отсюда

 (4.4)

Обозначим множитель, на который умножается R, через sn;j; индекс n;j указывает на продолжительность ренты и величину процентной ставки. В дальнейшем этот множитель будем называть коэффициентом наращения ренты. Этот коэффициент представляет собой наращенную сумму ренты, член которой равен 1.

 (4.5)

Таким образом,

S = Rsn;j. (4.6)

Как видим, коэффициент наращения ренты зависит только от срока (числа членов ренты) и процентной ставки. С увеличением каждого из этих параметров его величина увеличивается. При i = 0 S = Rn, при n = 1 S = R. Значения коэффициента легко табулировать. Фрагмент такой таблицы приведен в Приложении, табл. 4.

Пример 4.2. Для обеспечения некоторых будущих расходов создается фонд. Средства в фонд поступают в виде постоянной годовой ренты постнумерандо в течение пяти лет. Размер разового платежа 4 млн. руб. На поступившие взносы начисляются проценты по ставке 18,5% годовых. Поскольку в таблице коэффициентов наращения (Приложение, табл. 4) нет такого значения ставки, то необходимую величину определим по формуле (4.4). Величина фонда на конец срока составит:

S = 4 х s5;18,3 =  = 28,9 млн. руб.

Заметим, что полученные выше формулы (4.4) и (4.5) могут применяться и для определения наращенной суммы p-срочной ренты. В этом случае переменная п означает число периодов, в свою очередь i является ставкой за период. Например, пусть рента постнумерандо выплачивается по полугодиям. Тогда в формуле (4.4) под n следует понимать число полугодий, а под i — сложную ставку за полугодие.

Годовая рента, начисление процентов т раз в году. Пусть, как и выше, анализируется годовая рента постнумерандо. Однако проценты начисляются т раз в году. Члены ренты с начисленными к концу срока процентами образуют ряд (перепишем его в обратном порядке):

R, R(1+ j/m)m, R(1+ j/m)2m,..., R(l + j/m)(n-1)m,

где j — номинальная ставка процентов.

Нетрудно убедиться, что и в этом случае мы имеем дело с возрастающей геометрической прогрессией. Первый член прогрессии равен R, знаменатель — (1 + j/m)m. Сумма членов этой прогрессии равна

 (4.7)

Пример 4.3. Несколько изменим условия примера 4.2. Пусть теперь проценты начисляются поквартально, а не раз в году. Имеем j/m = 18,5/4, тп = 20.

 = 29,663 млн руб.

Как видим, переход от годового начисления процентов к поквартальному несколько увеличил наращенную сумму.

Рента p-срочная = 1). Пусть рента выплачивается р раз в году равными суммами, процент начисляется один раз в конце года. Если годовая сумма платежей равна R, то каждый раз выплачивается R/p. Общее число членов ренты равно пр. Ряд членов ренты с начисленными процентами представляет собой геометрическую прогрессию. Первый член ее равен R/p, знаменатель — (1 + i)1/p. Сумма членов этой прогрессии:

 (4.8)

Пример 4.4. Опять вернемся к условиям примера 4.2. Допустим, теперь платежи выплачиваются поквартально: R/p - 1 млн. руб., общее число платежей равно 20. Наращенная сумма составит

S = 4 = 30,834 млн. руб.

Рента p-срочная (р = m). На практике часто встречаются случаи, когда число выплат в году равно числу начислений процентов, т. е. когда р = т. Для получения необходимой формулы воспользуемся формулой (4.4), в которой i заменяется на j/m, а вместо числа лет берется число периодов выплат ренты пр, член ренты равен R/p. Поскольку р = т, то в итоге получим:

 (4.9)

Искомая величина может быть получена и по формуле (4.4). В этом случае вместо числа лет подставляем в формулу число периодов, а вместо годового члена ренты — выплату за период, кроме того, вместо годовой ставки берется ставка за период.

Пример 4.5. Продолжим наш сквозной пример 4.2 - 4.4. Пусть выплата членов ренты и начисление процентов производятся поквартально. По формуле (4.9) получим:

S = 4 = 31,785 млн. руб.

или по формуле (4.4):

 = 31,785 млн. руб.

Рента p-срочная (p<>m). Определим теперь наращенную сумму для наиболее общего случая — p-срочная рента с начислением процентов т раз в году. Общее количество членов ренты равно пр, величина члена ренты R/p. Члены ренты с начисленными процентами образуют ряд, следующий геометрической прогрессии, с первым членом R/p и знаменателем (1+ j/m)m/p. Сумма членов такой прогрессии составит:

 (4.10)

Пример 4.6. Если в ренте, наращенная сумма которой определялась в предыдущем примере, начисление процентов производится ежемесячно, то

 = 32, 025 млн руб.

Непрерывное начисление процентов. Обсуждение методов определения наращенных сумм дискретных рент будет неполным, если не охватить ренты с непрерывным начислением процентов. Перепишем в обратном порядке ряд платежей с начисленными непрерывными процентами. Пусть это будут ежегодные платежи постнумерандо. Получим  . Сумма членов этой прогрессии равна

 (4.11)

где е — основание натуральных логарифмов,  — сила роста.

Аналогично для p-срочной ренты находим:

 (4.12)

Пример 4.7. Если бы в условиях примера 4.2 вместо ежегодного начисления процентов предусматривалось непрерывное их начисление, причем сила роста была бы равна 18,5%, то: S = 4 = 29,955 млн. руб.

При ежеквартальной выплате членов ренты получим: S = 4 = 32,150 млн. руб.

Заметим, что непрерывное начисление процентов членов дискретной ренты дает в итоге такую же сумму, что и наращение по дискретной ставке i или j, если сила роста эквивалентна этим ставкам. Продемонстрируем сказанное. Сила роста, эквивалентная годовой ставке 18,5% согласно формуле (3.31), составит= ln (1 + + 0,185) = 0,16974. Тогда для годовой ренты находим:

S = 4  = 28,900 млн руб. (см. пример 4.2).

Сравнение результатов наращения годовых и p-срочных рент постнумерандо с разными условиями выплат и наращения процентов. Как видно из приведенных примеров, условия выплат (точнее, их частота) и наращения процентов заметно влияют на размер наращенной суммы. Для практика, очевидно, представляет определенный интерес соотношение этих сумм. Ниже сравниваемые суммы обозначены как S(p;m): так, S(1;1) означает наращенную сумму годовой ренты с ежегодным начислением процентов, S(1;m) — аналогичную характеристику для ренты с начислением процентов т раз в году, наконец, S(p; ) — наращенную сумму р-срочной ренты с непрерывным начислением процентов.

Для одних и тех же сумм годовых выплат, продолжительности рент и размеров процентных ставок (i = j = ) получим следующие соотношения:

 (4.13)

Приведенные неравенства могут быть использованы при выборе условий контрактов, так как позволяют заранее (до расчета) получить представление о приоритете того или иного условия. Например, можно заранее сказать, что рента с условиями р = 2 и т = 4 дает меньшую наращенную сумму, чем с р = 4 и т = 2 при равенстве всех прочих условий.

Для иллюстрации приведем значения S(p;m) для ренты с параметрами п = 10, R = 10, i =j =  = 6% :

 

 

т = 1

 

m = 2

 

m = 4

 

m = 12

 

т =

 

р = 1

 

131,81

 

132,37

 

132,65

 

132,85

 

132,95

 

р = 4

 

134,74

 

135,35

 

135,67

 

135,88

 

135,99

 

4.3. Современная стоимость постоянной ренты постнумерандо

Годовая рента. Напомним, что под современной стоимостью потока платежей понимают сумму дисконтированных членов этого потока на некоторый предшествующий момент времени. Вместо терминов "современная стоимость" и "современная величина" потока платежей в зависимости от контекста употребляют термины капитализированная стоимость и приведенная величина. Как было показано выше, современная стоимость потока платежей эквивалентна в финансовом смысле всем платежам, которые охватывает поток. В связи с этим данный показатель находит широкое применение в разнообразных финансовых расчетах (планирование погашения долгосрочных займов, реструктурирование долга, оценка и сравнение эффективности производственных инвестиций и т. д.). В общем виде метод определения современной величины потока платежей (метод прямого счета) рассмотрен в параграфе 4.1. Здесь же объектом анализа является постоянная финансовая рента.

Методы расчета современных стоимостей финансовых рент обсудим в том же порядке, что и методы наращения рент, и почти столь же детально. Начнем с самого простого случая — годовой ренты постнумерандо, член которой равен R, срок ренты n; ежегодное дисконтирование. Рента немедленная. В этих условиях дисконтированная величина первого платежа равна Rv, второго — Rv2, последнего — Rvn. Как видим, эти величины образуют ряд, следующий геометрической прогрессии, с первым членом Rv и знаменателем v. Обозначим сумму членов этой прогрессии как А. Найдем ее:

 (4.14)

Назовем множитель, на который умножается R, коэффициентом приведения ренты, обозначим его как an;i. Этот коэффициент характеризует современную стоимость ренты с членом, равным 1. Чем выше значение i, тем меньше величина коэффициента. При увеличении срока ренты величина an;i стремится к некоторому пределу. При п = предельное значение коэффициента составит

 (4.15)

Полученное выражение применяется при расчете современной стоимости вечной ренты. Об этом речь пойдет в параграфе 4.5.

График зависимости an;i от n показан на рис 4.2. Значения an;i табулированы. Фрагмент таблицы коэффициентов приведен в Приложении, табл. 5.

Пример 4.8. Рента постнумерандо характеризуется следующими параметрами: R = 4 млн. руб., п = 5. При дисконтировании по сложной ставке процента, равной 18,5% годовых, получим:

A = 4 х a5;18,5 = 4 = 4 x 3,092 = 12,368 млн. руб.

Таким образом, все будущие платежи оцениваются в настоящий момент в сумме 12,368 млн. руб. Иначе говоря, 12,368 млн. руб., размещенных под 18,5% годовых, обеспечивают ежегодную выплату по 4 млн. руб. в течение пяти лет.

Заметим, что формула (4.14) применяется и для определения современной стоимости p-срочной ренты. В этом случае переменная п означает число периодов, а i — ставку за период (но не годовую ставку).

Годовая рента, начисление процентов m раз в году. Не будем выводить формулу для этого случая, а заменим в формуле (4.14) дисконтный множитель (1 + i)-n на эквивалентную величину (1 +j/m)-mn, соответственно i заменим на (1 +j/m)m - 1, после чего имеем:

 (4.16)

Рента p-срочная (m = 1). Если платежи производятся не один, a p раз в году, то коэффициенты приведения находятся так же, как и в случае годовой ренты. Только теперь размер платежа равен R/p, а число членов np. Сумма дисконтированных платежей равна:

 (4.17)

Пример 4.9. В гл. 1 (параграф 1.1) упоминалась авария на химическом заводе в Бхопале (Индия). Корпорация "Юнион кар-байд" первоначально предложила в качестве компенсации пострадавшим 200 млн. долл., выплачиваемых в течение 35 лет. Предложение было отклонено (За рубежом. 1985. № 11). Выше было отмечено, что такая компенсация адекватна 57,6 млн. долл., выплаченных единовременно. Покажем, как была рассчитана эта сумма.

Если выплаты производятся помесячно на протяжении 35 лет равными суммами, то данный ряд платежей представляет собой постоянную ренту (p = 12) с годовой суммой выплат 200/35 = = 5,714 млн. долл. в год. Допустим, это рента постнумерандо. Тогда согласно формуле (4.17), положив i = 10%, получим:

A = 5,714 = 57,59 млн. долл.

Иначе говоря, капитал в сумме 57,59 млн. долл. при начислении 10% годовых был бы достаточен для выполнения обязательства.

Рента p-срочная (p = m). Число членов ренты здесь равно числу начислений процентов; величина члена ренты составляет R/m. В итоге

 (4.18)

Искомый результат можно получить и по формуле (4.14) и при этом воспользоваться таблицей коэффициентов приведения постоянных рент. В этом случае вместо числа лет берется количество периодов ренты, процентная ставка и величина члена ренты определяются соответствующим образом (см. пример 4.5).

Рента p-срочная (p <> m). Сумма членов соответствующей прогрессии составит

 (4.19)

Ренты с непрерывным начислением процентов. Пусть, как и выше, ряд состоит из ежегодных платежей, равных R, однако проценты начисляются непрерывно, сила роста равна . При дисконтировании по этой ставке всех членов ряда получим геометрическую про-грессию с первым членом R и знаменателем. Сумма членов про-грессии составит:

 (4.20)

Если имеет место p-срочная рента, то

 (4.21)

Пример 4.10. Для условий примера 4.8 при = 0,185 находим A = 4 =11,878 млн. руб.

Сравнение современных постоянных стоимостей рент постнумерандо с разными условиями. Как следует из приведенных примеров, величина современной стоимости заметно зависит от условий наращения процентов (точнее, дисконтирования) и частоты выплат в пределах года. Ниже приводятся соотношения современных стоимостей соответствующих рент. Современные стоимости обозначены как

A(p;m), причем (1;1) — годовая рента с ежегодным начислением процентов, (p;) — p-срочная рента с непрерывным начислением процентов.

Для одних и тех же годовых сумм выплат и процентных ставок (i =^j =) получим следующие неравенства:

Из приведенных неравенств следует, что рента с условиями p = 2 и m = 4 имеет меньшую современную стоимость, чем рента с p = 4 и m =2.

Зависимость между наращенной и современной стоимостью постоянной ренты. В параграфе 4.1 показана зависимость между A и S y произвольного потока платежей — см. формулу (4.3). Для годовых и p-срочных постоянных рент постнумерандо с ежегодным начислением процентов находим:

Аналогичным образом получим:

Svn=A.

Для рент с начислением процентов m раз в году имеем:

A(i +j/m)mn = S; (4.22)

S(i+j/m)-mn=A. (4.23)

Нетрудно догадаться, что в аналогичной зависимости находятся и соответствующие коэффициенты. В частности:

an;i(1 +i)n=sn;i; sn;ivn = an;i.

Пример 4.11. Найдем современную стоимость для варианта ренты p = m = 4, взяв за основу S = 31,785 (см. пример 4.5). По формуле (4.23) получим:

A = 31,785(1 + 0,185/4)-20 = 12,868 млн. руб.

 

28