yandex rtb 1
ГоловнаЗворотній зв'язок
yande share
Главная->Фінанси->Содержание->1.3.3. Основополагающие принципы нейровычислений

Прогнозирование финансовых рынков с использованием искусственных нейронных сетей

1.3.3. Основополагающие принципы нейровычислений

Основополагающие принципы нейрокомпьютинга - это родовые черты, объединяющие принципы работы и обучения всех нейрокомпьютеров. Главное, что их объединяет - нацеленность на обработку образов. Сформулируем эти парадигмы в концентрированном виде безотносительно к биологическим прототипам, как способы обработки данных.

1.3.3.1. Коннекционизм

Отличительной чертой нейросетей является глобальность связей. Базовые элементы искусственных нейросетей - формальные нейроны - изначально нацелены на работу с широкополосной информацией. Каждый нейрон нейросети, как правило, связан со всеми нейронами предыдущего слоя обработки данных (см. рис. 1.5, иллюстрирующий наиболее широко распространенную в современных приложениях архитектуру многослойного персептрона). В этом основное отличие формальных нейронов от базовых элементов последовательных ЭВМ - логических вентилей, имеющих лишь два входа. В итоге, универсальные процессоры имеют сложную архитектуру, основанную на иерархии модулей, каждый из которых выполняет строго определенную функцию. Напротив, архитектура нейросетей проста и универсальна. Специализация связей возникает на этапе их обучения под влиянием конкретных данных.

Рис. 1.5. Глобальность связей в искусственных нейросетях

Типичный формальный нейрон производит простейшую операцию - взвешивает значения своих входов со своими же локально хранимыми весами и производит над их суммой нелинейное преобразование:

Нелинейность выходной функции активации Y = f(S) принципиальна. Если бы нейроны были линейными элементами, то любая последовательность нейронов также производила бы линейное преобразование, и вся нейросеть была бы эквивалентна одному нейрону (или одному слою нейронов - в случае нескольких выходов). Нелинейность разрушает линейную суперпозицию и приводит к тому, что возможности нейросети существенно выше возможностей отдельных нейронов.

 

12